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Exact Equilibrium Shapes of Ising Crystals 
on Triangular/Honeycomb Lattices 
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The anisotropic surface tension for an Ising system below the critical point on a 
triangular or a honeycomb lattice can be computed through duality. Using the 
Wulff construction, the equilibrium shape of a crystal (droplet of one phase 
inside a sea of the other) is found. An exact and simple equation for this shape 
is derived. 
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1. I N T R O D U C T I O N  

Below its critical point, a two component ,  Ising-like system may  display 
phase coexistence, with an interface separating the phases. The surface ten- 
sion, the free energy per unit area of the interface, is in principle calculable 
from the microscopic Hamil tonian  within the s tandard framework of 
statistical mechanics. In practice, however, even the bulk free energy is not 
susceptible to exact analysis of this kind, except for two-dimensional  
systems on certain regular lattices. The problem of finding the surface ten- 
sion on these lattices is more  complex, since the tension is generally 
anisotropic. That  is, it is not  a single number  like the bulk energy, but a 
function a(n) of n, the normal  to the (planar) interface. With a recent 
increase in interest (1 3) in interfacial physics and crystal shapes, the 
question of finding these anisotropic tensions once again has at tracted 
attention. 

For  the square Ising model,  Onsager  undoubtedly  knew the 
anisotropic tension, a l though he only published the result for two specific 
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orientations. (4/ Seeveral authors t6'7't3) discovered (and rediscovered) it, 
ending with an explicit formula. (71 Here, we give a formula for a(n) in the 
tr iangular/honeycomb Ising model. 

One application, for a given a(n), is to construct the associated 
minimum energy surface via geometric methods of Wulff (~) or analytic ones 
of more recent authors. ~ l l) Such a surface is believed to describe the 
average shape of a (macroscopic) droplet of one phase in equilibrium with 
a background of the other. For historical reasons, these are called 
"equilibrium crystal shapes." Here, we use the or(n) appropriate  for the 
tr iangular/honeycomb Ising model to construct hexagonal "Ising crystals" 
in both cases. Apart  from the figures, which are found necessarily by 
numerical methods, we present a simple (and exact) equation for the 
shapes. 

The outline of this paper is as follows. The setup, the duality transfor- 
mation, and the surface tension function are given in Section 2. Following a 
brief review of the relationship between an anisotropic surface tension and 
the minimum energy shape, we show the Ising crystals in Section 3. A sum- 
mary and some remarks form the concluding section. 

2. S U R F A C E  T E N S I O N  IN 
T R I A N G U L A R / H O N E Y C O M B  ISING M O D E L S  

First, we study an Ising system with nearest neighbor coupling on a 
honeycomb lattice. The triangular case, related to this by a decimation (or 
a A - Y  transformation), will follow as an easy generalization. The most 
homogeneous system of this kind would have three distinct coupling 
energies E~ (c~ = 1, 2, 3; see Fig. 1). For the sake of clarity, we restrict our- 
selves to equal energies (E~ = E) during the derivation of a(n). Then we 
give a result for the general case at the end. 

Following standard notation, we define the coupling 

K -  ~E=- E/~:~ T (1) 

so that "below criticality" means K> K, . .  For  the surface tension, we 
should in principle apply boundary conditions + / -  to induce an interface 
between the two phases that would coexist on the low-temperature system. 
By a gauge transformation, this problem can be changed to one with an 
antiferromagnetic seam ~41'2 and homogeneous (say, all + )  boundary con- 
ditions. Now, in principle we need to study a system with a seam from one 
edge to another and take the thermodynamic limit appropriately. In prac- 

2 For a rigorous proof that an antiferromagnetic seam may also be used instead of + / -  
boundary conditions, see Ref. 5. 
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Fig. 1. Honeycomb lattice with Ising nearest neighbor energies Ei. 

tice, it is easier to consider an infinite system with a seam stretching 
between a hexagon and another one a distance R away. Then, the excess 
free energy of this system over the homogeneous one, divided by R, is 
expected to approach a constant as R ~ oo. In general, it will depend on 
the orientation of the line joining the hexagons, i.e., the interface between 
the + / -  phases. Characterizing the orientation by n, the normal to the 
"interface," this excess energy per unit length is defined as the anisotropic 
surface tension ~(n). 

Obviously, to find ~(n) on the original system is no easy task. For- 
tunately, it is related to the correlation length ~ on the dual system and 
that length can be extracted from the known ~j2/ two-spin correlation 
function. The dual system relevant here is an Ising model on a triangular 
lattice with coupling K*, which is related to K by 

tanh K* = exp( - 2K) (2) 

Thus, for K>Kc,  the dual system will be above its criticality, i.e., 
K * <  K,* = a r c t a n h ( 2 - , , ~ ) .  (In general, there is an E* dual to each E~; 
see Fig. 2). Now, the relation between a and ~ is extremely simple, (~3~ 

Fig. 2. 

= 1 /r  (31 

I 
I Et*" i 

/ \ / \  

The triangular dual lattice with energies E*. Dashed lines represent bonds on the 
honeycomb lattice. 
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where u is the unit vector normal to n. Note that s depends on T and E via 
the duality condition (2). 

To be more specific, associated with each hexagon is a site on the dual 
lattice. Thus, the two ends of the antiferromagnetic seam correspond to two 
sites on the triangular lattice. Label these (0, 0) and (M, N), so that 

Ru = Me l + Ne 2 (4) 

where the ei are the unit basis vectors on the dual lattice. (See Fig. 3. We 
normalize all physical distances by the lattice spacing on the triangular 
one.) Since e l - e  2 = --�89 R 2= M 2 +  X 2 -  MN. The correlation length may 
he extracted from the correlation function ( S S )  via 

l /~(u)= lim --ln(SooSMN)/R (5) 
R~oo 

and is orientation dependent in general. 
The full ( S S )  is quite complex, involving many terms and factors of 

integral representations [see Eqs. (5)-(7) in Vaidya's paper(12/]. For the 
leading large M, N behavior of (SS) ,  we need only one factor, 

JJII~ dO~ d~2 exp(--iMOl -- iNO2)/A(~I, ~2) (6) 

(a) 
P - e  I 

Fig. 3. 

fl 

f2 4 

(b) 

(a) Basis (normalized) vectors for the dual triangular system. (b) Basis vectors for the 
origJna| honeycomb system, fi ~ hoei rotated by 90 ~ 
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and the value of the integrand at the saddle point. Since overall constants 
are unnecessary, we write A in a simplified fashion: 

A = A -- cos ~b 1 - cos @2 - -  C O S ( ~ I  -}- ~2) (7) 

where 

A - [(cosh 2K*) 3 + (sinh 2K*)3]/sinh 2K* (8) 

One can check that A ~> 3, with the equality holding only at criticality. 
Thus, the saddle point occurs at complex ~bi = -it)~ (Latin indices running 
over l, 2 only), with the tp's satisfying 

and 

F(OI, ~ 2 ) -  A - cosh ~1 - cosh ~ 2 -  cosh(~, + ~2) = 0 (9a) 

M sinh @1 + sinh(~'l + ~2) ml 
- - -  ( 9 b )  

N sinh~k2+sinh(@~+O2) m2 

The equality in (9a) is actually an asymptotic condition, i.e., F =  O(1/R). 
So, to leading order, - l n ( S S )  is just M~p~+NO2. In (9b) we use the 
equivalents of sines and cosines for a triangular coordinate system, defined 
by 

m,-M/R and m2==_N/R (10) 

Thus the m's depend on u and e through u =miei  (summation implied). 
Explicitly, we have 

m, = &/(eJ �9 u) (11) 

where h11=h22=2h12=2h21=4/3 is the inverse of the metric on the 
triangular system. Since u is just n rotated by 90 ~ we define, for later con- 
venience, fg to be hue / rotated by 90 ~ (Fig. 3b). Then, (11) becomes 

mi=  f i ' n  (12) 

showing the explicit dependence of the m's on n. 
Summarizing, we have 

1 / ~ ( u )  ~ - l n  ( S S ) / R  ~.. m , t p ,  

and 

(13) 

fia(n) = mi~gi (14) 
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where the @'s depend on n, E, and T via Eqs. (9a), (9b). Note that, 
although these equations appear  transcendental, they are in fact algebraic 
ones for cosh @i- Unfortunately, the equation for each is sixth order and no 
simple explicit form like that for the square Ising case is found. 
Nevertheless, as will be shown in the next section, a simple explicit 
equation for the equilibrium shape can be derived. 

For  completeness, we simply note that if the E~ are not all equal, the 
form (14) would still be true with modifications for Eq. (9a). For the 
general case, we have 

H 1 cosh ~J1 j- H2 cosh @2 + H3 cosh(~/1 4- ~t2) = 1 (15) 

where 

H,  = 2Z2(1 - Z12)(1 - Z~)/D 

H 2 = 2Z1(1 - Z~)(1 - Z2)/D 

H 3 = 2Z3(1 - Z~)(1 - Z~)/D 

D = (1 -~ 22)(1  "[- Z2)(1 -[- Z 2) -[- 8 Z 1 Z 2 Z  3 

Z~ = exp( - 2flE~) 

We conclude this section with some remarks about  surface tensions on 
the Ising model on a triangular lattice. Note that this system must also be 
below its criticality, not to be confused with the dual triangular system. It 
is well known (14J that, by decimating every other spin on a honeycomb 
system, one arrives at a triangular one (a A Y transformation). Although 
microscopically there is a difference between these two systems, surface ten- 
sions and correlation lengths are macroscopic quantities. For  example, on 
a finite hexagonal system, it is possible to place the + / -  boundary con- 
ditions so that the interface is pinned between a spin that is to be 
decimated and one that is not. Ambiguity for the triangular system, in prin- 
ciple, arises. But, in the thermodynamic limit, when we are interested in an 
energy that goes to infinity like R, we could presumably just as well con- 
sider an interface pinned only by surviving spins. Now the ambiguity dis- 
appears. 

Another concern may be the antiferromagnetic bonds introduced to 
facilitate the calculation of surface tensions. This question is related to the 
one above, in that there are two types of triangles: up/down-pointing ones. 
To make a honeycomb system out of a triangular one, only one of the two 
types needs decoration (inverse of decimation). Thus, as long as the two 
ends of the antiferromagnetic seam terminate in the same type of triangle, 
every triangle of the other type would have two antiferromagnetic bonds 
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Fig. 4. Decorating a triangle with energies Lj~.  

(i.e., not frustrated) and may be decorated. We give the example, for com- 
pleteness, of decorating down-pointing triangles (Fig. 4). If the original 
couplings are L~ and 0)~ = tanh(L~), then decorated ones are given by 

tanh K1 = (o)1 -}- o92o)3)/(1 + 0)1 co20)3) 

and two other equations with 123 permuted cyclically. From such 
equations, it is clear that, as long as two (or no) L's are negative, two (or 
no) K's will be negative and real. By contrast, decoration with real K's can- 
not be performed on a frustrated triangle. 

3. EQUIL IBRIUM H E X A G O N A L  ISING CRYSTALS 

Given a a(n) and a fixed volume V, Wulff ~8~ has shown how to con- 
struct a minimum-energy surface S that encloses V. Although this beautiful 
geometric construction has much intuitive appeal, it is not very useful in 
extracting analytic results. There is an alternative route- - the  parametric 
representation. Originally due to Burton e ta l .  ~9) in work connected with 
ledge shapes in two dimensions, this representation was generalized to 
higher dimensions in a coordinate-invariant way. ~1~ 

The basic idea is to write X, the position vector associated with a 
point on S, as a function of n, the normal of the surface at that point. Thus, 
n acts a parameter and X sweeps out S as n varies over the unit sphere. 
There are no caveats provided a(n) is a smooth (twice-differentiable) 
function and the resultant S is not self-intersecting. If these conditions are 
not satisfied, there would be facets and corners in S and there are standard 
methods to supplement the parametric equations. (1~ For  our case, there 
are no facets or corners (except at the limiting case of T =  O) and we will 
stay with the simple equation. It is 

X(n) = 2'{n~r(n) + Vcr(n) } (16) 

822/45/5-6-3 
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Here, the gradient is taken with respect to n. In practice, it is convenient  to 
take the derivative as if n is not  normalized and then project out  the n com- 
ponent  with I - n  | n. Finally, 2' is a scale that can be used to satisfy the 
volume constraint.  

F r o m  (14), it is clear tha t /~a  is the natural,  dimensionless function to 
consider. Thus, defining 2 = 2'//~, we have 

X(n) = 2{ml ~i n + Vmi0i} 

with 2 being a pure length scale factor. This equat ion simplifies even further 
due to miV~bi= 0, which follows from taking the gradient of (9a), using the 
chain rule, and applying (9b). Thus, 

X(n) = )v{min + Vmi} Oi 

But the m's are just linear functions of n, so that  Vm = f -  n(n" f), which is 
just f - n m .  We arrive at the final result: 

X(n) = 2r  (17) 

These equilibrium shapes 3 are shown in Fig. 5 with 2 = 1//?, for various 
values of T. If the volume is fixed as V, then one only needs to scale 2 
appropriately.  Specifically, if we denote  the area inside a )~ = 1//~ curve as 
W, then setting 2 = (V/W) 1/2 will give the correct crystal shape. 

3These shapes resemble those obtained by Slotte and Hemmer, Iz~ who considered an 
antiferromagnetic Ising model in an external field, a model with very interesting properties. 
Distinct from the model studied here, the resemblence is entirely coincidental. 

Fig. 5. 

l 
Equilibrium shapes of Ising crystals for some temperatures. The outermost figure is 
for T=0.1T,.; successive inner ones represent 0.2T~., 0.3To, 0.4To, and 0.5Tc. 
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Although 2 = 1//~ may be thought of as a mere convenience, especially 
since the different shapes do not overlap in such a representation, the 
various figures in fact carry further information. In particular, distances 
here have units of energy (per lattice spacing). Thus, W represents the 
square of a surface tension. From the general result of Ref. 11, the total sur- 
face energy of an equilibrium crystal, with any V, is given simply by 
(2WV)  1/2 (in two bulk dimensions). Other information concerns certain 
points on each figure: those furthest and nearest to the center. At these 
points, the surface tension and equilibrium shape curves coincide in the 
Wulff construction. Thus, the distances from the center to these points are 
in fact the tensions for those normal directions. Furthermore, for T =  T~./IO 
(the outermost figure), the tension for a surface breaking the least bonds 
per unit length, i.e., a "near facet," is practically 2E. So, although for the 
sake of clarity both the surface tension curves and the axes are omitted, 
this information gives a clear sense of the energy scale. As expected, since 
the figures carry information on surface tension instead of the physical 
volume, they shrink monotonically with temperature, approaching zero as 
T,. is reached. 

Due to the extremely simple dependence of the equilibrium shape on 
the O's, it is possible to give another representation of these curves, one 
analogous to x 2 + y2 = r 2 for a circle. Not  surprisingly, we need coordinates 
natural to our system: the familiar triangular ones {Xl, x2, x3} satisfying 

xl + x 2 + x 3 = 0  (18) 

Figure 6 shows that a point given by X = 2qJifi would have xi = )api, so that 
the desired equation is just 

cosh(Xl /~  ) + cosh(x2/)~ ) + cosh(x3/J~ ) = A (19) 

xe~X~ %f2 ..';'~r 
/ I -'""2 ] 

x/ 
_ f 

Fig. 6. Triangular coordinates {x~}. 
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In addition to the explicit figures, let us analyze this formula directly 
near T =  T c and 0, and check that it interpolates between a circle and a 
hexagon. Recall that A approaches 3 as T--, To. Thus, x j 2  must be small 
and only two terms in each cosh contribute, leading to the equation 

x~ + x22 + x~ = const (20) 

Note that the x's are not small; they are dictated by the volume. However, 
2 does get large. That  this is the equation of a circle in triangular coor- 
dinates can easily be checked. So, isotropy in the leading critical behavior 
is recovered. 

On the other hand, A goes to infinity as T ~  0, and the x=/2 values 
must also get large (again, this is achieved by 2 becoming small and not by 
x getting large). However, for most values of the x's, their disparity means 
that one of the three terms in (19) saturates the left-hand side. Thus, major 
portions of the figure are given by one of the x's being nearly a constant 
while the other two vary. The crossover from one x~ to another occurs only 
when those two are (in the limit T =  0) equal. Such a figure is a hexagon. 

We conclude this section by quoting the equation for the droplets if 
the E~ are not all equal. Referring to Eq. (15) and those following, the 
generalized equation (19) is 

H 1 cosh(xl/2) + H 2 cosh(x2/2) + H 3 cosh(x3/2) = 1 (21) 

4. C O N C L U D I N G  R E M A R K S  A N D  S U M M A R Y  

Before the summary, we point out certain highlights associated with 
these exact equilibrium crystal shapes. 

4.1. Facets, Corners, Roughening,  and All That  

As expected, (9'is) in two-dimensional systems with short-ranged 
interactions, the roughening transition occurs at T =  0. Here, we confirm 
that result by the explicit, facetless shape [Eq. (19)] found for all T > 0 ,  
since faceted interfaces are associated with temperatures below roughening 
(see, e.g., Ref. 16). To display the approach to a faceted shape at T = 0  
analytically, we consider the curvature as a function of n. Ordinarily a 
tensor (11) with d -  1 nontrivial eigenvalues, its content is contained, in our 
case of d = 2, in its trace. Since X(n) is available explicitly, the trace of its 
inverse is just V - X  = 2fi 'VOi. The last factors can be obtained by taking 
gradients of Eqs. (9a), (9b): 

El V~I + F2 V~k2 = 0 (22) 

m2(Fl, V~91 + F~2 V~k2) - m~(Fzl VOl + F22 VO2) = Fzf~ - Flf2 (23) 
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where the subscripts on F denote derivatives with respect to ~ .  Define ~c, 
the physical curvature multiplied by 2, so that it is also dimensionless. 
Reducing everything to 7~ -cos h  ~ ,  we find 

A(1 - -  m1 rn2) - Yl ml(ml - -  2 m 2 )  - -  7 2 m 2 ( m 2  - -  2 m  j )  
K ~  

[(A -- yl)(A -- 72) +72 + -- 722--A 3] 1/2 
(24) 

For  the direction associated with a facet, we have m 1 = m 2 =  1 and 71 = 
72= [ ( 2 A + 3 )  i / 2 -  1]/2 and recognize that A ~ o o  as T--*0. Thus, ~c 
vanishes like e x p ( - E / k B  T) for this normal direction. Further, one verifies 
that, since one cannot reach temperatures below roughening, the entire 
facet develops at once at T =  0. We could also ask how the corners develop 
as T ~ 0 .  Here, we have 71 = (A - 1)/2, y2= 1, and rnl =2m2,  for example. 
Then, • approaches a constant. To translate this result into the physical 
curvature, we need to recall that the scale factor 2 approaches zero, so that, 
for a fixed volume, the curvature diverges. It is easy to check that 2 ~ T in 
this limit and the corner emerges via the radius of curvature going to zero 
like T. 

4.2. Approach to Isotropy near Tc for Equal Couplings E a 

We have seen that, as T~. is approached, one manifestation of isotropy 
is in the circularity of the equilibrium crystal shape. Beyond that, we could 
ask how the deviation from isotropy vanishes with t - (T C - T). The answer 
lies first in A = 3 + O(t2). Thus, x/;t is of the order of t. The corrections to 
circularity must come from the higher order terms in the expansion of the 
cosh function in Eq. (19). Explicitly, one can check that the x 4 terms com- 
bine into (x~ + x 2 + x l x z )  2, which is isotropic. This can be traced to the 
lack of an anisotropic quartic invariant in the permutat ion group of three 
objects. On the other hand, there is a cubic invariant, so that anisotropy 
emerges at the sixth order. Thus, the corrections to circularity first appears 
at O(t4). Consequently, by contrast to the square lattice system, where the 
first correction are at O(tZ), these droplets display a more isotropic form 
for T far below Tc. 

4.3. Scaling near T c for Unequal  Couplings Ea 

The critical behavior of this Ising system is the same, according to 
universality, (17) as that of the square one. In particular, we expect isotropy 
to be restored as Tc. is reached, for arbitrary ferromagnetic couplings E~. 
This expectation turns out not to be true unless a general linear transfor- 
mation on the spatial cordinates is performed. In the language of the r e n o r -  



812 Zia 

malization group, these operations would be labeled redundant. ~1~1 In our 
case of two-dimensional space, two parameters are available: the relative 
scale of x vs. y and a rotation. Thus, the general elliptical crystal shape 
near Tc can be brought into a circle. To be specific, refer to Eq. (21) and 
verify that Y~ H/-~ 1, 2 ~ oo, and the equation reduces to a homogeneous 

quadratic one in x-(-xl-2x2)/xj3 and y~-~x I . Diagonalize this 
quadratic form and rescale x, say, and arrive at the equation for a circle. 

4.4. Nonscaling for Arbitrary T and General Eo 

Like the square lattice case, the full shape equation (21), as opposed 
to the critical limit, cannot be cast into the equal E~ one [Eq. (19)] by any 
coordinate transformation. Nonlinear transformations spoil translational 
invariance, while linear ones cannot handle nonlinear terms. Unlike the 
square case, however, even the T = 0  limit cannot be transformed into a 
regular hexagon. This is clear, since the shape in this case consists of six 
facets with different lengths and 120 ~ angled corners. So, apart from having 
two relative scale factors to contend with, rescaling x vs. y generally spoils 
the 120 ~ angles. 

Another distinct mansfestation of the general E~ case lies in correc- 
tions to scaling near Tc. Once the leading shape is transformed into a cir- 
cle, the leading corrections are O(t2). By contrast, in the equal E~ case, this 
order is absent. The difference may be traced to the lack of permutation 
symmetry in thls situation, so that the raison d'atre for the absence of x 4 is 
missing. 

In these ways, the equilibrium shape reveals the relative strength of the 
couplings and cannot be "transformed away" by any coordinate transfor- 
mations of the underlying lattice structure. 

To summarize, we have presented the exact equilibrium shapes of 
crystals of the Ising model on honeycomb/triangular lattices. As expected, 
for both lattices, the shapes are hexagonal at low temperatures, gradually 
rounding off to circles as criticality is approached. For  all positive T, the 
shapes are smooth, while at T =  0, they have nothing but six facets and 
corners. The analytic form of these shapes is exceedingly simple. However, 
the anisotropic surface tension is not explicitly available, though it is given 
by elementary functions of the root of a sixth-order polynomial. 

It would be interesting to carry out a Monte Carlo study on these lat- 
tices and check against the shapes, the surface tensions, and, more easily, 
the total surface energy associated with a droplet. So far, only the total 
energy on a square lattice has been studied, (191 where the data agree well 
with analytic calculations like the present. (11) With the vast improvements 
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of microcomputers since that Monte Carlo simulation, such a study should 
be easy to persue. 
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